Passive Damping for High Tech Systems

opens up solution space

Px

Problem traditional mass-spring approach
Performance limited by high-frequency modes, damping

Legend:

10 NRB modes
96 NRB modes
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Material damping
Linear Viscoelasticity (LVE)

 The storage modulus s the
measure for energy storage as
function of frequency

+ The loss modulus (dashed line)
is the measure for energy
dissipation as function of
frequency
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Material damping
Linear ViscoElasticity (LVE)

RMD moclel with LVE luid

x = Ax + Bu
y=Cx+Du

State space representation
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Case study TMD in MRI scanner

Open structure and low conductance result in low eigen frequencies

+ Low stiffn, upport of
superconducting coils and
surrounding vessels at 300K,  ws-
40 K and 4 K via rods and
cables

. Low frequency eigen modes,
e.g. at ‘Pac-man’ mode at 22
Hz with high amplification

« Eddy currents resulting from
vibration negatively influence
magnetic field and so image
quality

Constrained layer damper (CLD)

ALinear Viscoelastic {LVE) material is applied as energy dissipating layer
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. ‘The RKU-equations calculate the complex stiffness,
including Shear Effciancy Factor (SEF)
sere1
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Over Actuated Test rig

Pockets designed on the stage’s corners to
the robust mass
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Characteristics of design in frequency domain
Dimensioning of leaf springs and visco-elastic material is key

Actuator
force

Py
« serial stiffness (orange) dictates transfer function of proposed
actuator suspension for high frequencies

Mathematical optimization
Step 1-2

Calculate population

Createne
population
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Mechatronics Academy

a Inthe past, many trainings were developed within Philips to
train own staff, but the training center CTT stopped.

a Mechatronics Academy B.V. has been setup to provide

continuity of the existing trainings and develop new
trainings in the field of precision mechatronics. It is founded

and run by:
@ Prof. Maarten Steinbuch
@ Prof. Jan van Eijk
@ Dr. Adrian Rankers

a We cooperate in the High Tech Institute consortium that
provides sales, marketing and back office functions.
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Course Director(s) / Trainers

Teachers
 Prof.Dr.ir. Hans Vermeulen (Eindhoven University of Technology & ASML)
» Dr.ir. Kees Verbaan (NTS Group)

Industrial Guest Speaker
 Dr.ir. Stan van der Meulen (ASML)

Course Director(s)

» Prof.Dr.ir. Hans Vermeulen (Eindhoven University of Technology & ASML)
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Program
Day

* Introduction

« Basics of Damping (energy dissipation, modal damping, exponential decay, other application domains)
Lunch

* Materials & Damping

+ Tuned Mass Dampers (Basics, Design Considerations, Case Study TMD in MRI Scanners)

» Case TMD Design for Ceramic Tool Slides

» Constrained Layer Damping (Modelling, Case Flexures & Frames)
Lunch

+ Demo & Exercise CLD

* CLD for Discontinuous Surfaces

* Robust Mass Damping (design, testing & semiconductor wafer stage case)

+ Integral Modelling & Optimization (approach, algorithms, over-actuated wafer chuck case)
Lunch

* Industrial Case Semiconductor Industry (modelling approach, design & analysis)

» Special Topics
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Day 1 (morning): Intro & Basics

Problem traditional mass-spring approach
Performance limited by high-frequency modes, damping

Introduction
Basics of Damping

Discrete system response — Stiffness, mass and
damper
Resonant behavior combined with transient behavior, damping

opens up solution space
Px
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Legend:
10 NRB modes
96 NRB modes
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o
leads to decreasing amplitudes over time after excitation E 4176[Hz]
= -~
Decay in time is a function of modal damping and natural
frequency (saves time too!!) l ot
it Free vs. forced response
" .. . _ .
Mass F(t) T J_X( ) s i el Energy dissipation — Spring and damper
Damper f f =1
" e - d cycl h litud
pAChE y| 5 . Forced cycles with constant amplitude: 1
N~ x(t) = Xsin(wt) -r-- A
F(t) = Fu(t) + Fa(t) = cx(t) + di(t) d % % c -
= cXsin(wt) + dwX cos(wt) ]
(] o meonsoncsacamyay. s camping o g | Angle of ellipsoid depends on the
' y T ‘ FIN] c2
" ‘ stiffness ¢
b X et | G
| L-C1
X
G T T REMARK: Moving the same mechanical T
Tir— . . . dwX
: system twice as fast results in a wider x [m]
ellipsoid, and therefore, the ellipsoid is
not a system characteristic X
[LE] © Mechatronics Academy8.v. Design for damping
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Day 1 (afternoon): Materials & TMD

» Materials & Damping
» Tuned Mass Damping (TMD)

Material damping

« Design for high damping and high stiffness usually implies a compromise

10 #Dismond

High stiffness

low damping

Material damping
Linear Viscoelasticity (LVE)

il
B - g . ! & * The storage modulus is the
a measure for energy storage as
O aS I CS é i ) Stiffness-Loss - g function of frequency
:"ln b Sti ?\‘;ss. 088 ] 3 * The loss modulus (dashed line)
. . d . i s nd 3.2.«1 - i is the measure for energy
D t { R 8 dissipation as function of
103 Cambridge Uaiv. P .
» Design Considerations e T I e
10 10 10 T 10 10]
Damping, Ian n ®) TYPICAL ELASTOMER
» Case Study MRI Scanner
TMD design rules (1/2) ial d ) ha
o
Effi f TMD TMD design rules for weakly damped structures ({< 0.03): Materia amping
ect o nass [xoft) Linear ViscoElasticity (LVE)
More TMD mass helps, effectiveness of extra mass reduces X(t) TMD mass ratio [-]: | m, ( -
L2 ; : o _m oo Ed '
| . s 22 0% Jat
“‘ ::2&; X,(t) Design rule (1) for optimal (undamped)
% ool : \ :gﬁ: frequency ratio [-]: )
3 | - S Jerope _ 1
;:c 10 > F(t) fao 1+
i Design rule (2) for relative damping [-]: o
3 m 10 Ikl .
Case study: TMD in MRI scanner 801+ 1) ETT—— : MO mecel wih LY g
Vibrations negatively affect image quality . . . %= Ax+ Bu
Eddy currents resulting from low frequency vibration negatively influence Case StUdV TMD in MRI scanner y=Cx+Du
) magnetic field of superconducting coils and so imaging performance Open structure and low conductance result in Iou‘v eigsg.frequencies c D State space representation
T ove stiffness support of T [HE] © mechatronies cssamy v [— Systeens - Material camping
superconducting coils and
p _ surrounding vessels at 300 K,
40 K and 4 K via rods and
I cables
— Low frequency eigen modes,
e.g. at ‘Pac-man’ mode at 22
— Hz with high amplification
Eddy currents resulting from
vibration negatively influence
magnetic field and so image
ma P— g or hghtech systems - Tudm quality
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Day 2 (morning): TMD case & CLD

Case: TMD design for ceramic tool slide
Design an optimum absorber (TMD) within boundary constralnts

Ceramics have high specific stiffness I I

» Constrained Layer Damping (CLD)

diamond turning machine
« Modelling

Ref: Vermeulen, .7.M.8, Geramic Optics! Dizrr

» Case Flexures & Frames

TMD boundary conditions and specifications (2/3)  fuusens o .
Goal: Provide maximum amount of damping via TMDs

CLD in flexures — Damping of axial motion (1/6) TMD interface

F(t) Upper tool slide

i E— =
Constrained.layer damping —Threg—layer beam N Eg_' L -

TMD design — Implementation examples (1/2)

Viscoelastic material

RKU (Ross, Kerwin and Ungar) method for optimal layer thickness constraining (sic)

| (Roush RA925)
=115 GPa Encoder TMD mass with elastic

i i terial: 3M ISD-112 measurement system straight guide (tungsten
Assumptions to make the problem solvable in alloy Mallory 1000 EF17)

closed-form:
1. Beamsimply-supported, which leads to

Hz, room temp. Lower tool slide

bearing

- Mounting frame
(aluminum 7075-T6)

Leaf spring with CLD (5-layers)

Diamond tool and
TMD interface

Reinforced leaf spring (2x)

purely sinusoidal mode shapes // .
2. Beamis comprised of only three layers (other ﬁ%‘ %MW-JM ar Loss
" alus factor
approximate techniques available for multi- W‘////

Pa] o] Mallory  Value  Unit

layer configurations)

: 1000 EF17
02 m TMD casa - N
3. Viscoelastomer is modeled by a complex 'f ;l.:; (:5/':[]
shear stiffness G* = G(1 + jn,) = G' + jG" . . . —r 700 Tl
4. Elastic layers are maintained at constant VISCOEIaStIC |ayer damplng
spacing by viscoelastic layer Broad band damping in structural components ) ) Y
S. Beam has wavelength sufficiently larger than 21 rectorer damo Dynamic model of tool slide w/ 2 TMDs bech e MO e
its thickness Free layer damping: - eelaverdameing
" X X,
6. Deflections small enough such that slope of . . . . ” 3 . n tmd2 tmd1
the neutral axis is much less than unity Vlscéelaﬂ'c layer |qaded n Constrained layer damping l;rmrmdz I:r’"m:ﬂ
e — o . tension / compression — Cimd2Z M0l gz o 1V S, Py
Ima) v - + Typically high Young’s modulus T _—
and high loss factor (region A) —_— Fg,,{r)T
m 90 gl d,
I os gm
Constrained layer damping: e 306 (Nl
. . . 3 1.0e8 IN/m]
+ Viscoelastic layer loaded in Wi o H «_H—K H‘_>
shear = very effective L daoao (e e tE . ls
Ll 600 [mm]
TVDiCa"V low YOUI‘IE'S modulus I 150,250 (mml Mass-spring-damper representationof too! slide w/ 2 TMDs.
and high loss factor (region B) ot 09 )
[ma] - ,
Incressing iemperature st constant frequency
]
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Day 2 (afternoon):. CLD

Constrained layer damper (CLD)

N

» Demo & Exercise CLD =

» CLD for Discontinuous Surfaces
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Day 3 (morning): RMD & Modelling

» Robust Mass Damping
» design, testing, semiconductor wafer stage)

» Integral Modelling & Optimization

» approach, algorithms, over-actuated wafer chuck)

Plate model — damper application

* Robust Mass Damper design-{>1-

Damper moving mass
fiexures g

pur VA v .
N oo .|
damper o
/« + Leaf spring dimensions | Young's modulus

« Maechanism damping
* Very low - le-3modal damping

. Gi'wmh
« Elasticity [Pa]
+ Viscosity [Pars]

damping[m]

Tz

damping [N

/ Stiffness N,

leenl unknown

Overview Approaches

B o B
Lumped mass ) ' !

=
Undamped
1 DoE n Dof modal analysisJ

L Dynamic model

f

Create

damping
models

( Fully Harmonic
Analvsrisﬁif

Dynamic analysis

| ZPK model -

A ZPK model is build from a list of poles and zeros. Thisis a
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Measurements — Transfer function

Damped -MP1

#  [dB]  factor
1 16,4
T 2 -38,7 86,1
v 3 -14,9 56
4 -26,6 21,4
i -19,7 97
6 21,1 1

[E] © mechatronics Academy B..

System poles

In real mechanical systems, resonances ar

very under-critically damped

~ Imag.
X axis
m HO saddle @ 3538 Hz

—> K | umbrella @ 2552 Hz
/#X Saddle @ 1919 Hz

QHX Torsion @ 1532 Hz

X HO bending @ 2760 Hz
HO bending @ 2760 Hz

very quick and intuitive way of creating a dynamic model
without the book keeping of transfer functions

SISO system
s Vector with poles
* Vector with zeros

PK.Vpoles Hz = ([  le2  le-z

« Single gain

(E] ©Mechoor

[maps 4 T i
L—1 Mathematical optimization
Step 12

igned on the stage’s corners to
ate for the robust m:
[ ”
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Day 3 (afternoon): Ind. Case & Specials

» Industrial Case 450mm wafer stage

» Special Topics

actuator 5
force (F) : ;i

sensor

Idea behind passive damping in motion stages
Establish servo bandwidth increase

position (y) _ From control perspective;
>

Traditional approach:
construct light and stiff

« ideal stageis rigid
« real stage is flexible:

— lightly damped resonances limit
achievable servo BW

Concept for 450mm lithography

Design comprises 4 horizontal actuators and 4 position sensors

« wafer stage short stroke (WSSS) encoder block (EB) for wafer
size transition from 300 to 450 [mm] (0.4% modal damping)

« 4 horizontal reluctance actuators for in-plane motion (red
arrows: x-actuators; green arrows: y-actuators)

«+ 4 stage position(ing) measurement (SPM) encoders in square
configuration at EB corners (black dots)

Modeling of actuator-chuck interface
Apply visco-elastic material in parallel to metal |eaf springs
. .

e [
I

141 stiffness

'

1 of -
LD et ose
Ha

10 wprings

Actuator

Characteristics of design in frequency domain
Dimensioning of leaf springs and visco-elastic material is key

Stftness (Ve

5!
l.) of creep compensation spring (CCS)
of visco-elastic material transfer function

S——

Experimental validation on component level
Split functionality between force frame and measurement table

@7 — fundamental problem, observed for: ) o . S::fif;un:::iz:rement i::::;sion
s « long/short stroke stages, as well as Experimental validation in system environment plsi
£ T g g8, Significant damping of actuator-chuck modes in 1-4 [kHz] range
g ¢ lenses and mirrors
210 19 L | >
iﬂ ~ = * frames (base/metro/force/sensor)
- ‘\ . L . .
0 1 T « introduce broadband passive
T ' w'  damping at existing actuator- 20 — ShelaF
Frequency (Hz) . b Vibration
chuck interface (damped actuator 140 isolation
. . bl
suspension (DAS)) = this g S ——
presentation § 0o
m Mechatronics Academy B.V. Passive damping for high tech systems - Industrial motion stage application 12] § 00 .
-220
Undamped|
e ———Damped
10° 10° 10
. Frequency (Hz)
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Sign up for this training

Via the website of our partner
High Tech Institute

Passive Damping for High Tech Systems - Overview
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http://www.hightechinstitute.nl/pdht

